World’s 2nd Fastest Supercomputer Simulates Universe’s Largest Evolution Model

Date:

he world’s second-fastest supercomputer, Frontier, has successfully carried out the most extensive simulation of the universe ever created, as per reports. The project, led by Salman Habib, Director of the Computational Science Division at Argonne National Laboratory, was undertaken to test models of cosmological hydrodynamics. The simulation was developed using the Hardware/Hybrid Accelerated Cosmology Code (HACC), which has been adapted for use on some of the most advanced supercomputers available.

As per the information shared by AMD in a press release, the Frontier is capable of processing up to 1.1 exaFLOPS, equating to 1.1 quintillion operations per second. The system integrates 9,472 AMD CPUs and 37,888 AMD GPUs, making it one of the most advanced machines globally. Reports indicate that this capability was surpassed only recently by another supercomputer, El Capitan, which achieved a processing speed of 1.742 exaFLOPS at Lawrence Livermore National Laboratory.

Development of Cosmological Simulations

The HACC code, which was originally developed over a decade ago, simulates the evolution of the universe. It has previously been deployed on less powerful systems like Titan and Summit, where the simulations primarily focused on gravitational forces. However, Frontier enabled the inclusion of additional factors such as hot gas, star formation, and black hole activity. Bronson Messer, Science Director at the Oak Ridge Leadership Computing Facility, remarked in a statement that the inclusion of baryons and dynamic physics marked a significant advancement in the realism of these simulations.

Applications and Scientific Implications

As per reports, the simulations will be made available to the scientific community to test and refine cosmological models. These include questions surrounding dark matter, dark energy, and alternative theories of gravity. The research aligns with the Department of Energy’s ExaSky project, a $1.8 billion initiative supporting exascale computing for astrophysical research.

See also  T Corona Borealis May Erupt Soon: Rare Nova Could Be Visible to Naked Eye

Reportedly, the study’s findings, it is anticipated, will be compared with data from large-scale astronomical surveys, such as those conducted by the Vera C. Rubin Observatory, to identify the models that best align with observable phenomena.

 

he world’s second-fastest supercomputer, Frontier, has successfully carried out the most extensive simulation of the universe ever created, as per reports. The project, led by Salman Habib, Director of the Computational Science Division at Argonne National Laboratory, was undertaken to test models of cosmological hydrodynamics. The simulation was developed using the Hardware/Hybrid Accelerated Cosmology Code (HACC), which has been adapted for use on some of the most advanced supercomputers available.

As per the information shared by AMD in a press release, the Frontier is capable of processing up to 1.1 exaFLOPS, equating to 1.1 quintillion operations per second. The system integrates 9,472 AMD CPUs and 37,888 AMD GPUs, making it one of the most advanced machines globally. Reports indicate that this capability was surpassed only recently by another supercomputer, El Capitan, which achieved a processing speed of 1.742 exaFLOPS at Lawrence Livermore National Laboratory.

Development of Cosmological Simulations

The HACC code, which was originally developed over a decade ago, simulates the evolution of the universe. It has previously been deployed on less powerful systems like Titan and Summit, where the simulations primarily focused on gravitational forces. However, Frontier enabled the inclusion of additional factors such as hot gas, star formation, and black hole activity. Bronson Messer, Science Director at the Oak Ridge Leadership Computing Facility, remarked in a statement that the inclusion of baryons and dynamic physics marked a significant advancement in the realism of these simulations.

See also  Boeing's Intelsat 33e Satellite Shatters in Orbit, Leaving 20 Pieces of Debris

Applications and Scientific Implications

As per reports, the simulations will be made available to the scientific community to test and refine cosmological models. These include questions surrounding dark matter, dark energy, and alternative theories of gravity. The research aligns with the Department of Energy’s ExaSky project, a $1.8 billion initiative supporting exascale computing for astrophysical research.

Reportedly, the study’s findings, it is anticipated, will be compared with data from large-scale astronomical surveys, such as those conducted by the Vera C. Rubin Observatory, to identify the models that best align with observable phenomena.

 

 

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

South Carolina prepares for second firing squad execution

A firing squad is set to kill a South...

RRB ALP Recruitment 2025: Apply for 9,970 vacancies from April 12; check selection process and other details here

The RRB ALP Recruitment 2025 application process for 9,970...

‘Gauti (Gautam Gambhir) bhai has helped me understand my potential’

Washington Sundar, a versatile all-rounder, faces the challenge of...

Apple is left without a life raft as Trump’s China trade war intensifies, analysts warn

Apple remains stranded without a life raft, experts say,...