New Nanoscale Optical Sensors Can Measure Magnitude of Force, Claims Study

Date:

Innovative nanoscale sensors capable of detecting mechanical forces with high sensitivity and range have been developed by researchers. These sensors, made from luminescent nanocrystals, respond to force by altering their intensity or colour. Remote measurements are possible using only light, eliminating the need for wires or physical connections. Potential applications for these sensors span from robotics to biophysics, medicine, and space exploration, marking a breakthrough in the remote sensing of mechanical signals across varying scales.

Developed Using Photon-Avalanching Effect

According to a study published in the journal Nature, these nanosensors utilise the photon-avalanching effect to achieve their remarkable capabilities. This process, involving rare-earth ions like thulium, amplifies a single photon absorption into a cascade of emitted photons.

The team, led by Jim Schuck, Associate Professor of Mechanical Engineering at Columbia University, discovered that the nanoparticles’ response to mechanical force surpassed initial expectations. Schuck told Phys.org that the extreme sensitivity observed during the tests was surprising and transformative for force measurement technologies.

Versatile and Biocompatible Sensors

The sensors operate using infrared light, which penetrates deeply into systems while remaining biocompatible. Natalie Fardian-Melamed, a postdoctoral researcher, highlighted their utility in monitoring technological and biological systems, aiding early detection of malfunctions.

Unlike previous methods requiring multiple devices, these sensors can function across scales—from subcellular interactions to larger systems like nanoelectromechanical systems (NEMS) or developing embryos.

Future Developments

Efforts are underway to expand the sensors’ capabilities, including self-calibrating features. The team aims to implement the technology in impactful areas, such as monitoring embryonic development. Schuck noted the significance of creating tools to probe forces within complex environments, aligning with challenges underscored by Nobel Laureate Ardem Patapoutian in understanding multiscale systems.

See also  Instagram Rolls Out New Comments Feature for Stories With 24-Hour Visibility

This breakthrough is expected to advance research and applications in diverse fields, offering unparalleled insights into mechanical force dynamics.

 

Innovative nanoscale sensors capable of detecting mechanical forces with high sensitivity and range have been developed by researchers. These sensors, made from luminescent nanocrystals, respond to force by altering their intensity or colour. Remote measurements are possible using only light, eliminating the need for wires or physical connections. Potential applications for these sensors span from robotics to biophysics, medicine, and space exploration, marking a breakthrough in the remote sensing of mechanical signals across varying scales.

Developed Using Photon-Avalanching Effect

According to a study published in the journal Nature, these nanosensors utilise the photon-avalanching effect to achieve their remarkable capabilities. This process, involving rare-earth ions like thulium, amplifies a single photon absorption into a cascade of emitted photons.

The team, led by Jim Schuck, Associate Professor of Mechanical Engineering at Columbia University, discovered that the nanoparticles’ response to mechanical force surpassed initial expectations. Schuck told Phys.org that the extreme sensitivity observed during the tests was surprising and transformative for force measurement technologies.

Versatile and Biocompatible Sensors

The sensors operate using infrared light, which penetrates deeply into systems while remaining biocompatible. Natalie Fardian-Melamed, a postdoctoral researcher, highlighted their utility in monitoring technological and biological systems, aiding early detection of malfunctions.

Unlike previous methods requiring multiple devices, these sensors can function across scales—from subcellular interactions to larger systems like nanoelectromechanical systems (NEMS) or developing embryos.

Future Developments

Efforts are underway to expand the sensors’ capabilities, including self-calibrating features. The team aims to implement the technology in impactful areas, such as monitoring embryonic development. Schuck noted the significance of creating tools to probe forces within complex environments, aligning with challenges underscored by Nobel Laureate Ardem Patapoutian in understanding multiscale systems.

See also  Oppo Reno 13 5G Series India Launch Teased; Design, Colour Options, Availability Revealed

This breakthrough is expected to advance research and applications in diverse fields, offering unparalleled insights into mechanical force dynamics.

 

 

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

South Carolina prepares for second firing squad execution

A firing squad is set to kill a South...

RRB ALP Recruitment 2025: Apply for 9,970 vacancies from April 12; check selection process and other details here

The RRB ALP Recruitment 2025 application process for 9,970...

‘Gauti (Gautam Gambhir) bhai has helped me understand my potential’

Washington Sundar, a versatile all-rounder, faces the challenge of...

Apple is left without a life raft as Trump’s China trade war intensifies, analysts warn

Apple remains stranded without a life raft, experts say,...