Cosmic Rays Could Help Scientists Study Tornado Formation Through Muon Detection

Date:

Efforts to understand the mechanics of tornado formation have taken an innovative turn with the exploration of cosmic rays. These high-energy particles, generated by interactions between cosmic rays and Earth’s atmosphere, are being proposed as a tool to remotely measure atmospheric pressure changes within supercell thunderstorms. This method could shed light on the low-pressure regions believed to play a critical role in the development of tornadoes.

Study Details and Proposed Methods

According to a study accepted by Physical Review D, muons, subatomic particles created by cosmic rays, could offer insight into the atmospheric conditions within tornadoes and supercell storms. Dr. William Luszczak, a physicist at Ohio State University, has told Science News that using these particles to monitor pressure changes from a safe distance. He explained that a detector placed up to five kilometres away could identify variations in muon intensity, which correlate with changes in air density and pressure.

Computer models have demonstrated that regions of lower pressure are instrumental in tornado development. By tracking muons as they pass through these areas, researchers aim to overcome the challenges of placing traditional pressure sensors directly in the path of destructive storms.

Practical Considerations and Challenges

The research team has proposed a detector spanning 1,000 square metres to track muons across tornado paths. While such a scale would demand waiting for storms to pass near fixed equipment, a portable 100-square-metre version could be deployed at predicted severe weather sites. Past experiments, like the GRAPES-3 project in India, have shown the feasibility of using muons to measure atmospheric phenomena, including thunderstorm voltages.

See also  India's Ministry of Consumer Affairs Partners with Meta on Digital Consumer Protection Initiative

Despite these advances, Dr. Hiroyuki Tanaka from the University of Tokyo has raised concerns about the practicality of building sufficiently portable detectors while talking to Science News. Challenges in applying the technique to supercells, which are smaller than cyclones, have also been noted. Field testing of this concept has been planned for the upcoming summer, offering an opportunity to validate its potential.

 

Efforts to understand the mechanics of tornado formation have taken an innovative turn with the exploration of cosmic rays. These high-energy particles, generated by interactions between cosmic rays and Earth’s atmosphere, are being proposed as a tool to remotely measure atmospheric pressure changes within supercell thunderstorms. This method could shed light on the low-pressure regions believed to play a critical role in the development of tornadoes.

Study Details and Proposed Methods

According to a study accepted by Physical Review D, muons, subatomic particles created by cosmic rays, could offer insight into the atmospheric conditions within tornadoes and supercell storms. Dr. William Luszczak, a physicist at Ohio State University, has told Science News that using these particles to monitor pressure changes from a safe distance. He explained that a detector placed up to five kilometres away could identify variations in muon intensity, which correlate with changes in air density and pressure.

Computer models have demonstrated that regions of lower pressure are instrumental in tornado development. By tracking muons as they pass through these areas, researchers aim to overcome the challenges of placing traditional pressure sensors directly in the path of destructive storms.

See also  Gaganyaan Astronauts Finish First Phase of Training for ISRO-NASA Joint Mission

Practical Considerations and Challenges

The research team has proposed a detector spanning 1,000 square metres to track muons across tornado paths. While such a scale would demand waiting for storms to pass near fixed equipment, a portable 100-square-metre version could be deployed at predicted severe weather sites. Past experiments, like the GRAPES-3 project in India, have shown the feasibility of using muons to measure atmospheric phenomena, including thunderstorm voltages.

Despite these advances, Dr. Hiroyuki Tanaka from the University of Tokyo has raised concerns about the practicality of building sufficiently portable detectors while talking to Science News. Challenges in applying the technique to supercells, which are smaller than cyclones, have also been noted. Field testing of this concept has been planned for the upcoming summer, offering an opportunity to validate its potential.

 

 

Share post:

Subscribe

spot_imgspot_img

Popular

More like this
Related

South Carolina prepares for second firing squad execution

A firing squad is set to kill a South...

RRB ALP Recruitment 2025: Apply for 9,970 vacancies from April 12; check selection process and other details here

The RRB ALP Recruitment 2025 application process for 9,970...

‘Gauti (Gautam Gambhir) bhai has helped me understand my potential’

Washington Sundar, a versatile all-rounder, faces the challenge of...

Apple is left without a life raft as Trump’s China trade war intensifies, analysts warn

Apple remains stranded without a life raft, experts say,...